Technical approach to individualized respiratory-gated carbon-ion therapy for mobile organs
نویسندگان
چکیده
We propose a strategy of individualized image acquisitions and treatment planning for respiratory-gated carbon-ion therapy. We implemented it in clinical treatments for diseases of mobile organs such as lung cancers at the Gunma University Heavy Ion Medical Center in June 2010. Gated computed tomography (CT) scans were used for treatment planning, and four-dimensional (4D) CT scans were used to evaluate motion errors within the gating window to help define the internal margins (IMs) and planning target volume for each patient. The smearing technique or internal gross tumor volume (IGTV = GTV + IM), where the stopping power ratio was replaced with the tumor value, was used for range compensation of moving targets. Dose distributions were obtained using the gated CT images for the treatment plans. The influence of respiratory motion on the dose distribution was verified with the planned beam settings using 4D CT images at some phases within the gating window before the adoption of the plan. A total of 14 lung cancer patients were treated in the first year. The planned margins with the proposed method were verified with clinical X-ray set-up images by deriving setup and internal motion errors. The planned margins were considered to be reasonable compared with the errors, except for large errors observed in some cases.
منابع مشابه
Impact of Various Beam Parameters on Lateral Scattering in Proton and Carbon-ion Therapy
Background: In radiation therapy with ion beams, lateral distributions of absorbed dose in the tissue are important. Heavy ion therapy, such as carbon-ion therapy, is a novel technique of high-precision external radiotherapy which has advantages over proton therapy in terms of dose locality and biological effectiveness.Methods: In this study, we used Monte Carlo method-based Geant4 toolkit to s...
متن کاملCarbon-ion scanning lung treatment planning with respiratory-gated phase-controlled rescanning: simulation study using 4-dimensional CT data
BACKGROUND To moving lung tumors, we applied a respiratory-gated strategy to carbon-ion pencil beam scanning with multiple phase-controlled rescanning (PCR). In this simulation study, we quantitatively evaluated dose distributions based on 4-dimensional CT (4DCT) treatment planning. METHODS Volumetric 4DCTs were acquired for 14 patients with lung tumors. Gross tumor volume, clinical target vo...
متن کاملInvestigation of lung normal tissue doses in lung tumors radiation therapy using both gated and conventional radiotherapy
Introduction: In radiation therapy of lung tumors, respiratory motion causes target moving, so a larger margin is needed to cover the clinical target volume (CTV). With the margin increasing, a larger volume of normal tissue will be exposed to high-dose. In this study, dosimetric parameters of normal lung tissue were compared between gated and conventional radiotherapy (RT), u...
متن کاملUnderstanding alternative splicing of Cav1.2 calcium channels for a new approach towards individualized medicine
Calcium channel blockers (CCBs) are widely used to treat cardiovascular diseases such as hypertension, angina pectoris, hypertrophic cardiomyopathy, and supraventricular tachycardia. CCBs selectively inhibit the inward flow of calcium ions through voltage-gated calcium channels, particularly Cav1.2, that are expressed in the cardiovascular system. Changes to the molecular structure of Cav1.2 ch...
متن کاملInvestigation on the Effect of Different Parameters in Wheeled Mobile Robot Error (TECHNICAL NOTE)
This article has focused on evaluation and identification of effective parameters in positioning performance with an odometry approach of an omni-directional mobile robot. Although there has been research in this field, but in this paper, a new approach has been proposed for mobile robot in positioning performance. With respect to experimental investigations of different parameters in omni-dire...
متن کامل